On perfectness of dot product graph of a commutative ring
Authors
Abstract:
Let $A$ be a commutative ring with nonzero identity, and $1leq n
similar resources
A note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
full textA graph associated to spectrum of a commutative ring
Let $R$ be a commutative ring. In this paper, by using algebraic properties of $R$, we study the Hase digraph of prime ideals of $R$.
full textA Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
full textDirected prime graph of non-commutative ring
Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$. Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...
full textA GRAPH WHICH RECOGNIZES IDEMPOTENTS OF A COMMUTATIVE RING
In this paper we introduce and study a graph on the set of ideals of a commutative ring $R$. The vertices of this graph are non-trivial ideals of $R$ and two distinct ideals $I$ and $J$ are adjacent if and only $IJ=Icap J$. We obtain some properties of this graph and study its relation to the structure of $R$.
full textThe annihilator-inclusion Ideal graph of a commutative ring
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
full textMy Resources
Journal title
volume 6 issue 2
pages 1- 7
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023